
Made by the people who make the **DUMMIES** books!
FOR A Wiley Brand

Prepare for
NAPLAN
success!

Years 6-8 Maths

FOR STUDENTS

FREE
CHAPTER

Master the essential skills for academic achievement
with your tutor in a book!

Years 6–8 Maths for Students®

Published by
Wiley Publishing Australia Pty Ltd
42 McDougall Street
Milton, Qld 4064
www.dummies.com

Copyright © 2016 Wiley Publishing Australia Pty Ltd

The moral rights of the authors have been asserted.

National Library of Australia
Cataloguing-in-Publication data:

Author: Colin Beveridge
Contributors: Mark Zegarelli, Ingrid Kemp
Title: Years 6–8 Maths for Students
ISBN: 9780730326731 (pbk.)
9780730326809 (ebook)
Series: For Dummies
Notes: Includes index.
Subjects: Mathematics—Textbooks
Mathematics—Study and teaching (Secondary)
Mathematics—Problems, exercises, etc.

Dewey Number: 510.76

All rights reserved. No part of this book, including interior design, cover design and icons, may be reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without the prior written permission of the Publisher. Requests to the Publisher for permission should be addressed to the Legal Services section of John Wiley & Sons Australia, Ltd, Level 2, 155 Cremorne Street, Richmond, Vic 3151, or email auspermissions@wiley.com.

Cover: Wiley Creative Services

Illustrations by Wiley, Composition Services Graphics

Typeset by diacriTech, Chennai, India

Printed in Australia by
Ligare Book Printer

10 9 8 7 6 5 4 3 2 1

Limit of Liability/Disclaimer of Warranty: THE PUBLISHER AND THE AUTHORS MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION, WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHORS SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANISATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHORS OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANISATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

Trademarks: Wiley, the Wiley logo, For Dummies, the Dummies Girl/Boy logo, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be used without written permission. All other trademarks are the property of their respective owners. Wiley Publishing Australia Pty Ltd is not associated with any product or vendor mentioned in this book.

Table of Contents

<i>Introduction</i>	1
---------------------------	---

About This Book	1
Foolish Assumptions	2
Icons Used in This Book	3
Where to Go From Here	3

Part 1: Whole Numbers: The Building Blocks of Maths.... 5

Chapter 1: Ready, Set... Success!	7
--	----------

You're Already Good at Maths	7
Your first homework assignment	8
Talking yourself up	9
Whole Numbers: Party Time!	10
Parts of the Whole: Fractions, Decimals, Percentages and More	11
Mmmm, pizza! Everyday fractions	12
Percentages are easier than you think: Introducing the Table of Joy	12
Sizing Up Time, Weights, Measures and Shapes	14
Weights and measures you already know	15
Getting yourself into shape	16
Why bother with graphs and tables?	16
Seeing How x Marks the Spot	16
Setting Yourself Up for Success	17
Getting properly equipped	17
Discovering where you work best	19
Improving your workspace	19
Staying Motivated	20
Remembering why you're studying	20
Using the 'calendar of crosses'	20
Rewarding yourself	21
Getting Your Head On Straight	21
Sitting up straight	22
Getting a breath of fresh air	22
Talking to yourself — not as crazy as it sounds	23
Learning from your mistakes	23
Keeping Good Notes	24
Deciding on a notebook or a computer	24
Recording the language of maths	25

Chapter 2: Getting Bigger and Smaller: Sequences, Addition and Subtraction	27
Understanding Number Sequences.....	28
Evening the odds	28
Counting by threes, fours, fives and so on	30
Getting square with square numbers	30
Composing yourself with composite numbers	31
Stepping out of the box with prime numbers	32
Multiplying quickly with exponents	33
It All Adds Up: Addition and Subtraction	34
Adding things up.....	35
Take it away: Subtracting.....	35
Looking at the number line	36
Adding and subtracting on the number line	37
Adding and subtracting with two rulers	40
Remembering Some Simple Sums	41
Meeting the adding table	41
Increasing your success with flash cards	44
What to do when you forget	45
Super-Size Me: Working with Bigger Numbers	45
Adding and taking away bigger numbers	46
In line: Adding larger numbers in columns.....	47
Carry on: Dealing with two-digit answers.....	47
Columns and stacks: Subtracting larger numbers.....	48
Can you spare a ten? Borrowing to subtract.....	49
Chapter 3: Equal Piles: Multiplying and Dividing.....	53
Meeting the Basics of Multiplication and Division	54
Remembering Your Times Tables.....	55
Practising your times tables.....	57
Working around mind blanks	60
Working backwards	63
Multiplying Bigger Numbers	64
Multiplying a big number by a small number	64
Multiplying two big numbers	67
Working with all of the zeros	70
One for You, One for Me: Handling Division	71
Dividing and conquering.....	72
Taking one step at a time	72
Making short work of long division	74
Dealing with the left overs: Remainders	77
Introducing Order of Operations	78
Applying order of operations to simple expressions	80
Using order of operations in expressions with exponents.....	82
Understanding order of operations in expressions with parentheses	83

Chapter 4: Going Backwards with Negative Numbers	89
Taking a Negative Turn: Negative Numbers	89
Addition and Subtraction with Negative Numbers	91
Starting with a negative number.....	92
Adding a negative number.....	92
Subtracting a negative number	93
Combining addition and subtraction operations	93
Combining signs.....	94
Multiplication and Division with Negative Numbers	94
Chapter 5: Say What? Turning Words into Numbers	97
Dispelling Two Myths about Word Problems.....	97
Word problems aren't always hard.....	98
Word problems are useful.....	98
Solving Basic Word Problems	99
Turning word problems into word equations	99
Plugging in numbers for words	102
Solving More Complex Word Problems	104
When numbers get serious.....	104
Too much information.....	105
Putting it all together.....	107
Part II: Parts of the Whole	109
Chapter 6: Cake or Death: Fractions without Fear	111
Slicing a Cake into Fractions	112
Knowing the Fraction Facts of Life.....	114
Telling the numerator from the denominator	114
Flipping for reciprocals	114
Using ones and zeros.....	115
Mixing things up.....	116
Knowing proper from improper	116
Increasing and Reducing Terms of Fractions.....	117
Increasing the terms of fractions	118
Reducing fractions to lowest terms.....	119
Reducing fractions the informal way	120
Converting between Improper Fractions and Mixed Numbers	121
Knowing the parts of a mixed number.....	122
Converting a mixed number to an improper fraction	122
Converting an improper fraction to a mixed number	123
Understanding Cross-Multiplication	123
All Together Now: Adding Fractions	124
Finding the sum of fractions with the same denominator.....	125
Adding fractions with different denominators.....	126

Taking It Away: Subtracting Fractions	132
Subtracting fractions with the same denominator.....	133
Subtracting fractions with different denominators.....	133
Multiplying and Dividing Fractions	137
Multiplying numerators and denominators straight across	137
Doing a flip to divide fractions	139
Working Properly with Mixed Numbers	140
Adding and subtracting mixed numbers	140
Multiplying and dividing mixed numbers	147
Fathoming Fractions on Your Calculator.....	148
Using the fraction button.....	149

Chapter 7: What's the Point? Dealing with Decimals **153**

Understanding Basic Decimal Stuff	154
Counting dollars and decimals.....	154
Identifying the place value of decimals.....	155
Knowing the decimal facts of life	156
Are We Nearly There Yet? Rounding and Estimating	159
Rounding: What's nearest?	160
That's about right: Estimating answers	163
Checking your answers	166
Linking Decimals to Fractions.....	167
Converting decimals to fractions.....	168
Converting fractions to decimals.....	169
Remembering some common fractions and decimals	170
Doing fractions with decimals.....	171
A recurring theme.....	172
Performing the Main Four Operations with Decimals	176
Adding decimals.....	177
Subtracting decimals.....	178
Multiplying decimals	179
Dividing decimals.....	180

Chapter 8: It's All Relative: Ratios, Proportions and Speed **185**

Getting to Know the Table of Joy.....	186
Seeing how the Table of Joy works.....	187
Understanding what goes where	188
Getting Rational: Understanding Ratios	189
One for you, two for me: Sharing	189
Cancelling ratios	190
Applying the Table of Joy.....	190
Working with parts	192
Managing multiple ratios	193
Getting a Sense of Proportion	194
Defining proportion	194
Perfecting proportions with the Table of Joy.....	195

Applying proportion	196
Scaling recipes	197
Speeding Along	198
Chapter 9: Perfect Percentages, 100% of the Time	201
Perusing Some Percentages You Already Know	201
Dealing with Percentages Greater than 100%	203
Comparing Percentages, Decimals and Fractions	203
Percentages and decimals	204
Percentages and fractions	205
Going up and going down	206
Changing prices	209
Solving Percentage Problems	210
Figuring out simple percentage problems	210
Turning the problem around	212
Deciphering more difficult percentage problems	212
Putting All the Percentage Problems Together	213
Identifying the three types of percent problems	214
Solving percentage problems with equations	215
Chapter 10: Word Problems with Fractions, Decimals and Percentages	219
Adding and Subtracting Parts of the Whole in Word Problems	219
Sharing a pizza: Fractions	220
Buying by the kilo: Decimals	221
Splitting the vote: Percentages	221
Problems about Multiplying Fractions	222
Renegade grocery shopping: Buying less than they tell you to...	222
Easy as pie: Working out what's left on your plate	223
Multiplying Decimals and Percentages in Word Problems	224
To the end: Figuring out how much money is left	225
Finding out how much you started with	226
Handling Percentage Increases and Decreases in Word Problems	227
Raking in the dough: Finding salary increases	228
Earning interest on top of interest	229
Getting a deal: Calculating discounts	230
Part III: Picturing and Measuring: Shapes, Weights and Graphs	231
Chapter 11: Shaping Up	233
You're Already in Good Shape	233
Sussing out shapes you know	234
Expanding your shapely vocabulary	235

What's Your Angle?.....	236
Defining angles	236
Measuring angles	238
Playing with Symmetry	239
On reflection: Turning shapes over	240
Doing the twist: Rotating shapes	241
Pretty patterns: Tessellation	242
Understanding Nets, Plans and Elevations, Oh My!.....	244
Folding under pressure: Nets	244
Looking at every angle: Plans and elevations	245

Chapter 12: Considering Time, Weights, Temperature and Measurements..... **247**

Understanding the Vocabulary of Time.....	248
Fractions in time	248
Different date formats	249
Comparing the 12-hour and 24-hour clocks	250
Catching the Bus: Seeing How Timetables Work.....	251
Doing Sums with Time	252
When does something start?.....	253
When does something end?.....	254
How long does something take?	254
Appreciating What You Already Know About Weights	255
Using digital scales	256
Using analogue scales	257
Measuring Weight Using the Metric System.....	258
Converting Weights	259
Using a table	259
Using a chart.....	260
Understanding Temperature	260
Thinking about thermometers	261
Nailing negative temperatures	262
Working on Your Measurements.....	266
Sizing up the vocabulary you need	266
Using a ruler properly	267
Using different units of length.....	270
Looking at Length, Distance and Perimeter	272
How long is a piece of string?.....	272
How many miles to Babylon?	272
Going all the way round	273
Summing up distance	273
Accessing All Areas	273
Recognising rectangles	274
Joining things up: Compound rectangles	275
Trying out triangles	276
Working on other shapes	277

Verifying Volume and Capacity	279
Working with cuboids.....	280
Working with all three-dimensional shapes.....	281
Reading Maps and Plans.....	282
Scales and distance	283
Chapter 13: Communicating Data with Graphs and Tables	287
A Spotter's Guide to Graphs and Charts	287
Nailing number tables	288
Bringing in the bar charts.....	289
Poking about in pie charts.....	292
Looking at line graphs	294
Reading Graphs, Tables and Charts	297
Picking the right data from a table	297
Understanding graphs.....	298
The Cartesian Plane	299
Plotting points on the Cartesian plane	299
Drawing lines on the Cartesian plane.....	300
Part IV: The <i>x</i>-Files: Introduction to Algebra	303
Chapter 14: Using the Alphabet for Maths.....	305
Expressing Yourself with Algebraic Expressions.....	306
Coming to algebraic terms.....	306
Identifying the coefficient and variable	307
Making the commute: Rearranging your terms	308
Identifying like terms.....	309
Considering algebraic terms and the main four equations	310
Simplifying Algebraic Expressions	314
Combining like terms	314
Removing brackets from an algebraic expression.....	315
Chapter 15: Using Algebra to Solve Equations	319
Understanding Algebraic Equations	320
Using x in equations	320
Choosing among four ways to solve algebraic equations	321
The Balancing Act: Solving for x	323
Striking a balance.....	323
Using the balance scale to isolate x	324
Rearranging Equations and Isolating x	326
Rearranging terms on one side of an equation	326
Moving terms to the other side of the equals sign.....	326
Removing brackets from equations.....	328
Cross-multiplying.....	330

Chapter 16: Algebra Word Problems	333
Solving Algebra Word Problems in Five Steps	333
Declaring a variable.....	334
Setting up the equation.....	335
Solving the equation.....	336
Answering the question	336
Checking your work.....	337
Choosing Your Variable Wisely	337
Solving More Complex Algebraic Problems	338
Charting four people	339
Crossing the finish line with five people.....	340
Part V: The Part of Tens.....	345
Chapter 17: Ten Tricks for Remembering Your Number Facts	347
Playing Games.....	347
Flashing Cards.....	348
Sticking Stickies	348
Counting on Your Fingers	349
Tricking Out the Nines	349
Tricking Out the Other Big Numbers	350
Tricks of six	350
Straight to eight.....	350
What about seven?	351
Five alive!	351
Breaking Down and Building Up	351
Eight: halving over and over.....	352
Surprised by six	352
Nailing nine	352
Finally fives	353
Learning from Your Mistakes	353
Working from What You Know	353
Training Yourself with Treats.....	354
Chapter 18: Ten (Almost!) Pitfalls to Avoid	355
Taking Care with Your Calculator	355
You're Out of Line!	355
Making Sure Your Answer Makes Sense	356
Distinguishing 'More Than' and 'At Least'	356
Reading the Question.....	356
Fathoming the Phantom 40 Minutes	357
Getting the Wrong Percentage	357
Rounding Too Early	357
Forgetting to Convert.....	358

Chapter 19: Ten (or so) Ways to Make Any Test Easier.....	359
Know What You're Up Against	359
Practise the Hard Parts.....	360
Remember the Basics	360
Use the Final Minutes before Your Exam.....	361
Don't Exhaust Yourself.....	361
Think Positive, or 'I'll Show Me!'	361
Have a Ritual	362
Manage Your Time.....	363
Guess If You Need To.....	364
Index.....	365

Introduction

Once upon a time, you loved numbers. This isn't the first line of a fairy tale. Once upon a time, you really did love numbers. Remember?

Maybe you were three years old and your grandparents were visiting. You sat next to them on the couch and recited the numbers from 1 to 10. Grandma and Grandpa were proud of you and — be honest — you were proud of yourself, too. Or maybe you were five and discovering how to write numbers, trying hard not to print your 2 and 7 backward.

Learning was fun. *Numbers* were fun. So what happened? Maybe the trouble started with long division. Or sorting out how to change fractions to decimals. Could it have been figuring out how to take away a 25 per cent discount from the cost of a purchase? Reading a graph? Converting miles to kilometres? Trying to find that most dreaded value of x ? Wherever it started, you began to suspect that maths didn't like you — and you didn't like maths very much, either.

Why do people often enter kindergarten excited about learning how to count and, somewhere along the line, become convinced that they can't do maths? The answer to this question would probably take 20 books this size, but solving the problem can begin right here.

I ask you to put aside any doubts. Remember, just for a moment, an innocent time — a time before maths inspired panic attacks or, at best, induced irresistible drowsiness. In this book, I take you from an understanding of the basics to the place where you're ready to enter any mathematics class and succeed.

About This Book

Along the road from counting to algebra, most people experience the Great Maths Breakdown. This feels something like when your car begins smoking and sputtering on a 43°C highway somewhere between Noplace and Not Much Else.

Please consider this book your personal roadside helper, and think of me as your friendly maths mechanic (only much cheaper!). Stranded on the

freeway, you may feel frustrated by circumstances and betrayed by your vehicle, but for the person holding the toolbox, it's all in a day's work. The tools for fixing the problem are in this book.

Not only does this book help you with the basics of math, but it also helps you get past any aversion you may feel toward maths in general. I've broken down the concepts into easy-to-understand sections. And because *Years 6–8 Maths for Students* is a reference book, you don't have to read the chapters or sections in order — you can look over only what you need. So feel free to jump around. Whenever I cover a topic that requires information from earlier in the book, I refer you to that section or chapter, in case you want to refresh yourself on the basics.

Here are two pieces of advice I give all the time — remember them as you work your way through the concepts in this book:

- ✓ **Take frequent breaks.** Every 20 to 30 minutes, stand up and push in your chair. Then feed the cat, tidy your room (yeah, right!), take a walk, juggle tennis balls, try on last year's Santa's hat — do something to distract yourself for a few minutes. You'll come back to your books more productive than if you just sat there hour after hour with your eyes glazing over.
- ✓ **After you've read through an example and think you understand it, copy the problem, close the book, and try to work it through.** If you get stuck, steal a quick look — but later, try that same example again to see whether you can get through it without opening the book. (Remember that, on any tests you're preparing for, peeking is probably not allowed!)

Although every author secretly (or not-so-secretly) believes that each word she pens is pure gold, you don't have to read every word in this book unless you really want to. Feel free to skip over sidebars (those shaded grey boxes) where I go off on a tangent — unless you find tangents interesting, of course.

Foolish Assumptions

Making assumptions is always a risky business, but knowing where I'm coming from may put you at ease. So, in writing this book, I assume that:

- ✓ You know how to count and are familiar with the symbols for the numbers.
- ✓ You understand the idea of money and changing a banknote for an equivalent value of coins.

- ✓ You know what some basic shapes look like.
- ✓ You're prepared to think fairly hard about maths and want either to pass an upcoming test or exam or to simply improve your maths skills.

Icons Used in This Book

Throughout the book, I use three icons to highlight what's hot and what's not:

This icon points out key ideas that you need to know. Make sure you understand before reading on! Remember this info even after you close the book.

Theories are fine, but anything marked with a Tip icon in this book tells you something practical to help you get to the right answer. These are the tricks of the mathematical trade.

The Warning icon highlights errors and mistakes that can cost you marks or your sanity, or both.

Where to Go From Here

This book is set up so you can jump right into the topics that interest you. If you feel like an absolute beginner in maths, I recommend you read Parts I and II to build a foundation for the other topics. If you're pretty comfortable with the mechanics of maths, use the table of contents and index to find the subject you have questions about right now. This book is a reference — keep it with your maths kit and turn to it whenever you have a question about maths.

Chapter 2

Getting Bigger and Smaller: Sequences, Addition and Subtraction

In This Chapter

- ▶ Tuning into number sequences
- ▶ Starting to get your head around addition and subtraction
- ▶ Working with the number line
- ▶ Understanding some simple tricks to remember simple sums
- ▶ Working up to adding and subtracting bigger numbers

One useful characteristic about numbers is that they're *conceptual*, which means that, in an important sense, they're all in your head. (This fact probably won't get you out of having to know about them, though — nice try!) For example, you can picture three of anything: Three cats, three cricket balls, three cannibals, three planets. But just try to picture the concept of three all by itself, and you find it's impossible. Oh, sure, you can picture the numeral 3, but the *threeness* itself — much like love or beauty or honour — is beyond direct understanding. But when you understand the *concept* of three (or four, or a million), you have access to an incredibly powerful system for understanding the world of mathematics.

In this chapter, I discuss a few common *number sequences* and show you how these connect with simple math *operations* like addition and subtraction.

Adding things up and taking them away are the two most fundamental skills in arithmetic. If you master these skills — just two sides of the same coin — you'll find the rest of this book much, much easier than it would be without them.

This chapter covers adding and taking away using a number line for small values. I also give you some hints on memorising some important sums. After all, counting on your fingers is totally acceptable — but it's much slower than being able to recall facts straightaway.

Finally in this chapter, you get some practice at dealing with big numbers. I take some time to show you not only how to add and subtract big numbers but also why the methods work.

Understanding Number Sequences

Historians believe that the first number systems came into being at the same time as agriculture and commerce. Before that, people in prehistoric, hunter-gatherer societies were pretty much content to identify bunches of things as 'a lot' or 'a little'. Moving on from counting commodities, humans soon put numbers to use in a wide range of applications. Numbers were useful for measuring distances, counting money, amassing an army, levying taxes, building pyramids, and lots more.

But beyond their many uses for understanding the external world, numbers have an internal order all their own. So numbers are not only an *invention*, but equally also a *discovery*: A landscape that seems to exist independently, with its own structure, mysteries and even perils.

One path into this new and often strange world is the *number sequence*: An arrangement of numbers according to a rule. In the following sections, I introduce you to a variety of number sequences that are useful for making sense of numbers.

Evening the odds

One of the first facts you probably heard about numbers is that all of them are either even or odd. For example, you can split an even number of marbles *evenly* into two equal piles. But when you try to divide an odd number of marbles the same way, you always have one *odd*, leftover marble. Here are the first few even numbers:

2 4 6 8 10 12 14 16 ...

You can easily keep the sequence of even numbers going as long as you like. Starting with the number 2, keep adding 2 to get the next number.

Similarly, here are the first few odd numbers:

1 3 5 7 9 11 13 15 ...

The sequence of odd numbers is just as simple to generate. Starting with the number 1, keep adding 2 to get the next number.

Patterns of even or odd numbers are the simplest number patterns around, which is why kids often figure out the difference between even and odd numbers soon after learning to count.

When I planned this chapter, I thought there could be hardly any real-life use for knowing about even and odd numbers. Then, this morning, I went out to try to find a new student's house. Wandering down the student's road, I noticed a sign saying 'ODD NUMBERS 15–37' — so I knew Eric's house (number 29) was in that particular side street. But odd and even numbers have more use than simply finding a friend's house. You can also use the concept of odd and even numbers to check whether your answer to an addition or take-away sum makes sense.

Try adding two numbers of the same 'flavour' — an odd number plus an odd number, or an even number plus an even number. Here are a few examples:

$$7 + 5 = 12$$

$$14 + 6 = 20$$

$$9 + 9 = 18$$

The answer is always an even number.

The same happens if you take away an odd number from an odd number, or an even number from an even number:

$$7 - 5 = 2$$

$$14 - 6 = 8$$

$$9 - 9 = 0$$

The answer is always an even number.

Now see what happens when we work with numbers of mixed flavours:

$$4 + 7 = 11$$

$$16 - 7 = 9$$

$$12 + 3 = 15$$

You get odd numbers. Perhaps you saw that coming. Whenever you add or take away numbers of different flavours, you get an odd number.

Counting by threes, fours, fives and so on

When you get used to the concept of counting by numbers greater than 1, you can run with it. For example, here's what counting by threes, fours and fives looks like:

Threes: 3 6 9 12 15 18 21 24 ...

Fours: 4 8 12 16 20 24 28 32 ...

Fives: 5 10 15 20 25 30 35 40 ...

Counting by a given number is a good way to begin learning the multiplication table for that number, especially for the numbers you're kind of sketchy on. (In general, people seem to have the most trouble multiplying by 7, but 8 and 9 are also unpopular.) In Chapter 3, I show you a few tricks for memorising the multiplication table once and for all.

Getting square with square numbers

When you study maths, sooner or later, you probably want to use visual aids to help you see what numbers are telling you. (Later in this book, I show you how one picture can be worth a thousand numbers when I discuss geometry in Chapter 12 and graphing in Chapter 13.)

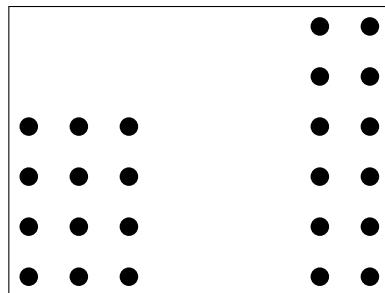
The tastiest visual aids you'll ever find are those little square cheese-flavoured crackers. (You probably have a box sitting somewhere in the pantry. If not, plain crackers or any other square food works just as well.) Shake a bunch out of a box and place the little squares together to make bigger squares. Figure 2-1 shows the first few.

Figure 2-1:
Square
numbers.

1	1 2	1 2 3	1 2 3 4	1 2 3 4 5
	3 4	7 8 9	13 14 15 16	6 7 8 9 10
				11 12 13 14 15
				16 17 18 19 20
				21 22 23 24 25

Voilà! The square numbers:

1 4 9 16 25 36 49 64 ...



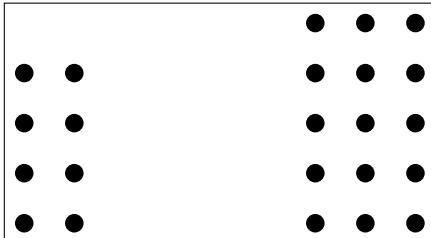
You get a *square number* by multiplying a number by itself, so knowing the square numbers is another handy way to remember part of the multiplication table. Although you probably remember without help that $2 \times 2 = 4$, you may be sketchy on some of the higher numbers, such as $7 \times 7 = 49$. Knowing the square numbers gives you another way to etch that multiplication table forever into your brain, as I show you in Chapter 3.

Square numbers are also a great first step on the way to understanding exponents, which I introduce later in this chapter and explain in more detail in Chapter 3.

Composing yourself with composite numbers

Some numbers can be placed in rectangular patterns. Mathematicians probably should call numbers like these ‘rectangular numbers’, but instead they chose the term *composite numbers*. For example, 12 is a composite number because you can place 12 objects in rectangles of two different shapes, as in Figure 2-2.

Figure 2-2:
The number
12 laid
out in two
rectangular
patterns.


As with square numbers, arranging numbers in visual patterns like this tells you something about how multiplication works. In this case, by counting the sides of both rectangles, you find out the following:

$$3 \times 4 = 12$$

$$2 \times 6 = 12$$

Similarly, other numbers such as 8 and 15 can also be arranged in rectangles, as in Figure 2-3.

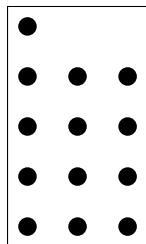
Figure 2-3:
Composite
numbers,
such as
8 and 15,
can form
rectangles.

As you can see, both these numbers are quite happy being placed in boxes with at least two rows and two columns. And these visual patterns show this:

$$2 \times 4 = 8$$

$$3 \times 5 = 15$$

The word *composite* means that these numbers are *composed* of smaller numbers. For example, the number 15 is composed of 3 and 5 — that is, when you multiply these two smaller numbers, you get 15. Here are all the composite numbers from 1 to 16:


4 6 8 9 10 12 14 15 16

Notice that all the square numbers (refer to the preceding section) also count as composite numbers, because you can arrange them in boxes with at least two rows and two columns. Additionally, a lot of other non-square numbers are also composite numbers.

Stepping out of the box with prime numbers

Some numbers are stubborn. Like certain people you may know, these numbers — called *prime numbers* — resist being placed in any sort of a box. Look at how Figure 2-4 depicts the number 13, for example.

Figure 2-4:
Unlucky
13, a prime
example of
a number
that refuses
to fit in
a box.

Try as you may, you just can't make a rectangle out of 13 objects. (That fact may be one reason the number 13 got a bad reputation as unlucky.) Here are all the prime numbers fewer than 20:

2 3 5 7 11 13 17 19

As you can see, the list of prime numbers fills the gaps left by the composite numbers (refer to the preceding section). Therefore, every counting number is either prime or composite. The only exception is the number 1, which is neither prime nor composite.

Multiplying quickly with exponents

Here's an old question with an answer that may surprise you: Suppose you took a job that paid you just 1 cent the first day, 2 cents the second day, 4 cents the third day, and so on, doubling the amount every day, like this:

1 2 4 8 16 32 64 128 256 512 ...

As you can see, in the first ten days of work, you would've earned a little more than \$10 (actually, \$10.23 — but who's counting?). How much would you earn in 30 days? Your answer may well be, 'I wouldn't take a lousy job like that in the first place.' At first glance, this looks like a good answer, but here's a glimpse at your second ten days' earnings:

... 1,024 2,048 4,096 8,192 6,384 32,768 65,536 131,072
262,144 524,288 ...

By the end of the second 10 days, your total earnings would be over \$10,000. And by the end of 30 days, your earnings would top out around \$10,000,000! How does this happen? Through the magic of exponents

(also called *powers*). Each new number in the sequence is obtained by multiplying the previous number by 2:

$$2^1 = 2$$

$$2^2 = 2 \times 2 = 4$$

$$2^3 = 2 \times 2 \times 2 = 8$$

$$2^4 = 2 \times 2 \times 2 \times 2 = 16$$

As you can see, the notation 2^4 means *multiply 2 by itself 4 times*.

You can use exponents on numbers other than 2. Here's another sequence you may be familiar with:

$$1 \quad 10 \quad 100 \quad 1,000 \quad 10,000 \quad 100,000 \quad 1,000,000 \quad \dots$$

In this sequence, every number is 10 times greater than the number before it. You can also generate these numbers using exponents:

$$10^1 = 10$$

$$10^2 = 10 \times 10 = 100$$

$$10^3 = 10 \times 10 \times 10 = 1,000$$

$$10^4 = 10 \times 10 \times 10 \times 10 = 10,000$$

This sequence is important for defining *place value*, the basis of the decimal number system, which shows up when I discuss decimals in Chapter 7. You find out more about exponents in Chapter 3.

It All Adds Up: Addition and Subtraction

Adding is what happens when you combine two groups of similar objects together. If I own four books and I buy two more, I end up with six of them: $4 + 2 = 6$. You add up when you gain or increase something.

One of the neat things about maths is that the rules hold whatever you add — it doesn't have to be books. If you start with four cups of coffee and drink two more, you've drunk six cups of coffee. If you walk 4 kilometres and then walk two more, you've walked 6 kilometres. Whatever the things are, if you start with four of them and add two more, you end up with six.

You have to be careful when you're adding and taking away that the things you're working with are similar — you can't really add two apples to four oranges and get a meaningful answer without bending the rules (you could say it makes six pieces of fruit, but that's a bit of a cheat). It really doesn't make sense to add two clouds to four phones, or to add 2 kilometres to 4 grams.

You probably have a good idea about taking away too. Taking away, or subtracting, happens when you decrease, lose or spend things. If I have six books and my cheapskate friend borrows two of them, I wind up with four books: $6 - 2 = 4$.

Adding things up

Addition is the first operation you find out about, and it's almost everybody's favourite. It's simple, friendly and straightforward. No matter how much you worry about maths, you've probably never lost a minute of sleep over addition. Addition is all about bringing things together, which is a positive goal. For example, suppose you and I are standing in line to buy tickets for a movie. I have \$30 and you have only \$10. I could lord it over you and make you feel crummy that I can go to the movies and you can't. Or, instead, you and I can join forces, adding together my \$30 and your \$10 to make \$40. Now, not only can we both see the movie, but we may even be able to buy some popcorn, too.

Addition uses only one sign — the plus sign (+): Your equation may read $2 + 3 = 5$, or $12 + 2 = 14$, or $27 + 44 = 71$, but the plus sign always means the same thing.

When you add two numbers together, those two numbers are called *addends*, and the result is called the *sum*. So, in the first example, the addends are 2 and 3, and the sum is 5.

Take it away: Subtracting

Subtraction is usually the second operation you discover, and it's not much harder than addition. Still, there's something negative about subtraction — it's all about who has more and who has less. Suppose you and I have been running on treadmills at the gym. I'm happy because I ran 5 kilometres, but then you start bragging that you ran 12 kilometres. You subtract and tell me that I should be very impressed that you ran 7 kilometres farther than I did. (But with an attitude like that, don't be

surprised if you come back from the showers to find your running shoes filled with liquid soap!)

As with addition, subtraction has only one sign: The minus sign ($-$). You end up with equations such as $4 - 1 = 3$, and $14 - 13 = 1$, and $93 - 74 = 19$.

When you subtract one number from another, the result is called the *difference*. This term makes sense when you think about it: When you subtract, you find the difference between a higher number and a lower one.

One of the first facts you probably heard about subtraction is that you can't take away more than you start with. In that case, the second number can't be larger than the first. And if the two numbers are the same, the result is always 0. For example, $3 - 3 = 0$; $11 - 11 = 0$; and $1,776 - 1,776 = 0$. Later someone breaks the news that you *can* take away more than you have. When you do, though, you need to place a minus sign in front of the difference to show that you have a negative number — that is, a number below 0:

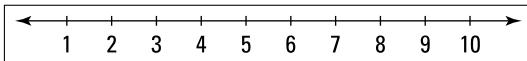
$$4 - 5 = -1$$

$$10 - 13 = -3$$

$$88 - 99 = -11$$

When subtracting a larger number from a smaller number, remember the words *switch* and *negate*: You *switch* the order of the two numbers and do the subtraction as you normally would, but at the end, you *negate* the result by attaching a minus sign. For example, to find $10 - 13$, you switch the order of these two numbers, giving you $13 - 10$, which equals 3; then you negate this result to get -3 . That's why $10 - 13 = -3$.

The minus sign does double duty, so don't get confused. When you stick a minus sign between two numbers, it means the first number minus the second number. But when you attach it to the front of a number, it means that this number is a negative number.


I also go into more detail on negative numbers in Chapter 4.

Looking at the number line

As kids outgrow counting on their fingers (and use them only when trying to remember the names of all seven dwarfs), teachers often substitute a picture of the first ten numbers in order, like the one in Figure 2-5.

This way of organising numbers is called the *number line*. People often see their first number line — usually made of brightly coloured construction paper — pasted above the blackboard in school. The basic number line

Figure 2-5:
 Basic
 number line.
 Numbers go
 on forever,
 so the line
 doesn't stop
 here —
 but you
 probably
 don't need
 to go any
 higher.

provides a visual image of the *counting numbers* (also called the *natural numbers*), the numbers greater than 0. You can use it to show how numbers get bigger in one direction and smaller in the other.

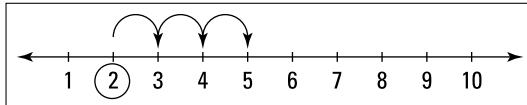
Some people like to draw the number line vertically, starting with zero at the bottom of the page and counting up the line, like counting floors in a skyscraper. In this book, I work from left to right, mainly because it takes up less space.

I like to remember which way round the number line goes by saying ‘the left is less (or lower)’ — the three Ls.

You don't actually need to draw a number line. A ruler serves as a perfectly good substitute. A 30-centimetre ruler has all the numbers from 0 to 30 written out ready for you to count on as you please.

In this section, I show you how to use the number line to understand a few basic but important ideas about numbers.

Adding and subtracting on the number line

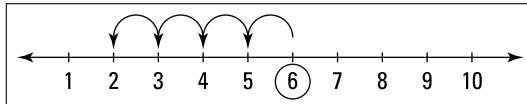

You can use the number line to demonstrate simple addition and subtraction. These first steps in maths become a lot more concrete with a visual aid. Here's the main point to remember:

- ✓ As you go *right*, the numbers go *up*, which is *addition* (+).
- ✓ As you go *left*, the numbers go *down*, which is *subtraction* (-).

For example, $2 + 3$ means you *start at 2* and *jump up 3 spaces* to 5, as Figure 2-6 illustrates.

Figure 2-6:

Moving through the number line from left to right.


Here, in full, is the method for adding:

1. Put your pen on the number line on the first number in your sum.
2. Move to the right by the number of spaces indicated by the second number in your sum.
3. Where you end up on the number line is the answer.

As another example, $6 - 4$ means *start at 6* and *jump down 4 spaces* to 2. That is, $6 - 4 = 2$. See Figure 2-7.

Figure 2-7:

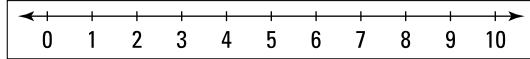
Moving through the number line from right to left.

Here, in full, are the steps for taking away:

1. Put your pen on the number line on the first number in your sum.
2. Move to the left by the number of spaces indicated by the second number in your sum.
3. Where you end up on the number line is the answer.

The steps for adding and taking away are very similar — the only difference is the direction in which you move.

You can use these simple up and down rules repeatedly to solve a longer string of added and subtracted numbers. For example, $3 + 1 - 2 + 4 - 3 - 2$

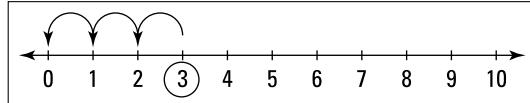

means 3, *up* 1, *down* 2, *up* 4, *down* 3 and *down* 2. In this case, the number line shows you that $3 + 1 - 2 + 4 - 3 - 2 = 1$.

Getting a handle on nothing, or zero

An important addition to the number line is the number 0, which means *nothing*, *zilch*, *nada*. Step back a moment and consider the bizarre concept of nothing. For one thing — as more than one philosopher has pointed out — by definition, *nothing* doesn’t exist! Yet we routinely label it with the number 0, as in Figure 2-8.

Figure 2-8:

The number line starting at 0 and continuing with 1, 2, 3, ... 10.



Actually, mathematicians have an even more precise labelling of *nothing* than zero. It’s called the *empty set*, which is sort of the mathematical version of a box containing nothing.

Nothing sure is a heavy trip to lay on little kids, but they don’t seem to mind. They understand quickly that when you have three toy trucks and someone else takes away all three of them, you’re left with zero trucks. That is, $3 - 3 = 0$. Or, placing this on the number line, $3 - 3$ means start at 3 and go down 3, as in Figure 2-9.

Figure 2-9:

Starting at 3 and moving down three.

Seeing how close numbers are

Using the number line for taking away lets you see how far apart two numbers are. Some people call taking away ‘finding the difference’ — this method shows you why.

If you need to figure out $19 - 17$, you don't really want to have to count back 17 spaces. Instead, look at the number line and see directly that you'd need to take two steps to get from 17 to 19 — so $19 - 17 = 2$.

This technique works only with taking away. Don't be tempted to try it with adding.

Adding and subtracting with two rulers

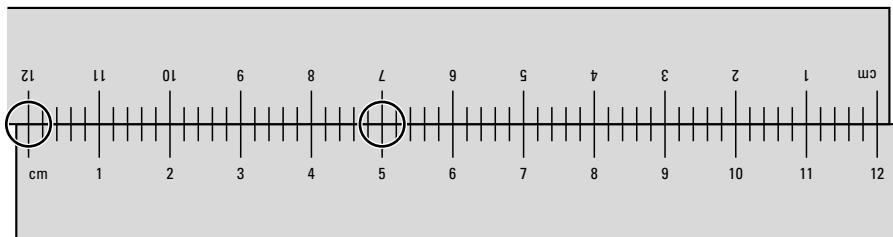
You can, with a bit of work, use two rulers to add and take away small numbers. To add two numbers (let's say $7 + 5$, as in Figure 2-10), here's what you do:

1. Find the first number on one ruler.

For our sum, this number is seven.

2. Find the second number on the other ruler.

For our sum, this number is five.


3. Put the two numbers next to each other.

4. Find the zero on either ruler and read the number it's next to.

For our sum, this number is 12. So, $7 + 5 = 12$.

Some rulers have centimetres on one side and inches on the other — make sure you use the centimetre side of both rulers!

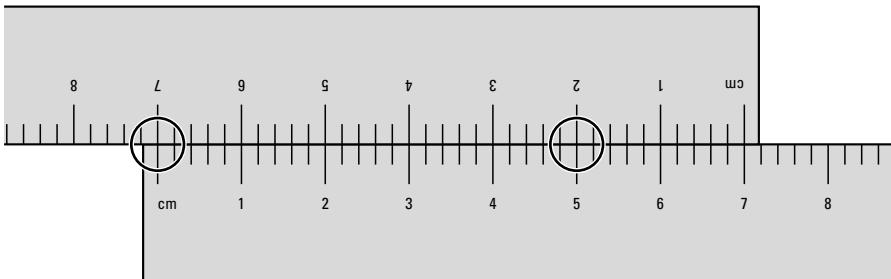
Figure 2-10:
Adding seven and five with the help of two rulers.

Taking away two numbers is slightly different. Let's do $7 - 5$, as in Figure 2-11:

1. Find the first number on one ruler.

For our sum, this number is seven.

2. Put the zero of the other ruler next to the first number.


For our sum, put the zero next to the seven.

3. Find the second number on the second ruler.

For our sum, this number is five.

4. Read off the number the second number is next to.

For our sum, this number is 2. So, $7 - 5 = 2$.

Figure 2-11:
Doing the
sum $7 - 5$
with two
rulers.

Remembering Some Simple Sums

Using the number line or the ruler method that I describe in the preceding sections is all well and good if you have all the time in the world. But when your sums involve big numbers, you may need to do several small-number sums one after the other. Before you know it, you've spent hours on a sum when you could have been taking a walk in the park.

I don't usually recommend remembering things you can easily look up, but you can save yourself literally days of work if you know your number facts — that is, all of the adding sums up to $10 + 10$.

If you think this sounds like a lot of work, I'm afraid you're right: There are 100 of those pesky sums. I have some good news, though: Addition is symmetrical — it doesn't matter which way round you add things. For example, $4 + 7$ is the same as $7 + 4$ (they both make 11). So at least you only have to remember about half as many facts as you thought.

Meeting the adding table

Figure 2-12 shows an adding table to help you learn your number facts. Adding with the table is easy — you find the first number you want to add in the top row and the second number you want to add in the far-left column, and then follow down and across with your fingers until they meet.

+	0	1	2	3	4	5	6	7	8	9	10
0	0	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10	11
2	2	3	4	5	6	7	8	9	10	11	12
3	3	4	5	6	7	8	9	10	11	12	13
4	4	5	6	7	8	9	10	11	12	13	14
5	5	6	7	8	9	10	11	12	13	14	15
6	6	7	8	9	10	11	12	13	14	15	16
7	7	8	9	10	11	12	13	14	15	16	17
8	8	9	10	11	12	13	14	15	16	17	18
9	9	10	11	12	13	14	15	16	17	18	19
10	10	11	12	13	14	15	16	17	18	19	20

Figure 2-12:
The adding
table for
numbers
1–10.

You can take away with the table too, but this takes a little more practice: Find the first number in the body of the table, and notice how that number is repeated through the grid in a diagonal stripe. Go along the stripe until the column you’re in has the second number at the top of it. Read across to the left — the answer is at the start of the row. I show you how to solve $16 - 8$ using this method in Figure 2-13.

+	0	1	2	3	4	5	6	7	8	9	10
0	0	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10	11
2	2	3	4	5	6	7	8	9	10	11	12
3	3	4	5	6	7	8	9	10	11	12	13
4	4	5	6	7	8	9	10	11	12	13	14
5	5	6	7	8	9	10	11	12	13	14	15
6	6	7	8	9	10	11	12	13	14	15	16
7	7	8	9	10	11	12	13	14	15	16	17
8	8	9	10	11	12	13	14	15	16	17	18
9	9	10	11	12	13	14	15	16	17	18	19
10	10	11	12	13	14	15	16	17	18	19	20

Figure 2-13:
Solving
 $16 - 8$ using
the adding
table.

Unfortunately, you won’t always have the adding table with you. So you really do need to learn all the sums in it.

You might think that spending time on adding and taking away small numbers seems a bit basic. Don't beat yourself up about having to learn stuff that seems simple. If you ever watch a football team training, you'll see the players spend hours making simple kicks and passes to each other and running back and forth. Most of the players have done this stuff since they were six (or younger), but they still practise so that kicking, marking and running is natural and easy when they play in a real match. Spending time reminding yourself how to do the basics of maths is absolutely fine. In fact, I wish all my students would spend some time on this!

Learning your adding facts

Luckily, you can break down the adding table a bit. Start with the first column — adding one. You already know how to do that without thinking: You just go to the next number. So you hardly need to learn that column of the table.

Now look at the last row — adding ten. Adding ten is simple: You just put a one in front of the original number. For example, $2 + 10 = 12$. And $7 + 10 = 17$. (The exception is $10 + 10 = 20$, but you probably know that.)

If you're happy to count backwards, you can add nine — just add ten and count back by one. So, to do $6 + 9$, you can say '6 + 10 is 16. Count back 1 to get 15.' You can check this idea works with some of the other sums in the adding table.

So, now you actually only have 28 number facts to learn — but you may wonder how you will learn them.

I suspect that if you enjoy sitting in rows at school reciting 'seven plus one equals eight, seven plus two equals nine ...' for hours on end, you probably aren't reading this chapter. That method is effective ... but deadly dull.

My way of teaching makes things a bit more interesting: I want you to play some cards:

- 1. Find a pack of cards.**
- 2. Deal two cards.**
- 3. Find the score of each of the cards.**

An ace is worth one, and the court cards (jack, queen and king) are all worth ten.

- 4. Add up the scores of the two cards.**

If you can work out the score in your head without looking at the adding table or counting, pat yourself on the back. If not, write the sum in your notebook to look back at later.

- 5. Go back to Step 2 until you run out of cards.**

Play this card game every day for a week or so. The more you do it, the fewer questions you will need to write down in your book — which means you're learning. Go you!

Tackling your take-away facts

To learn the take-away facts, I need you to play some more cards — with a twist (see what I did there?):

- 1. Find a pack of cards.**
- 2. Deal three cards — two of them together and one below them.**
- 3. Figure out the score of each of the cards.**

An ace is worth one and the court cards are worth ten each.

- 4. Add up the scores on the first two cards.**
- 5. If the third card is smaller than your two-card total from Step 4, take away the third card score from the two-card score. If the third card is bigger than your two-card total, take away the two-card score from the third card score.**

For example, if you deal 6, 7 and 4, your sums are $6 + 7 = 13$, and then $13 - 4 = 9$. If you deal 2, 3 and a king, your sums are $2 + 3 = 5$, and then $10 - 5 = 5$.

If you work out the score in your head without looking at the adding table or counting, pat yourself on the back. If not, write down the sum in your notebook.

- 6. Go back to Step 2 until you run out of cards.**

You'll have one card left over, so just ignore that one. Do this subtraction game every day for a week — you'll quickly get the hang of taking away.

Increasing your success with flash cards

I like to use flash cards — little cards with a question or sum on one side and the answer on the back. You can buy ready-made flash cards, find free printable ones online, or make your own out of index cards or cut-up paper.

Here's how to use your flash cards to help your adding and taking away sums:

- 1. Shuffle all the flash cards you want to practise.**
- 2. Answer the question on the top one.**

3. Check the answer.

If you get it right straightaway, put that card to one side; if not, put the card to the back of the pile.

4. Go back to Step 2 until you've put all the cards to one side.

The neat thing about the flash-card method is that it makes you practise the sums you need to practise more than the ones you know by heart.

Try working with flash cards against the clock. Seeing how quickly you get through the pack as you practise can be a great motivator.

What to do when you forget

Even with all the preparation in the world, you sometimes forget your sums. It happens to me, it'll happen to you, it happens to Stephen Hawking. Instead of getting upset or frustrated, finding other ways to approach a question is a good idea.

The best strategy is probably to go back to the two-rulers method or simply count on your fingers. But although these are perfectly good once-in-a-while strategies, you probably don't want to be doing them every time — otherwise, your sums take hours.

When you forget a sum, write it down in your notebook. Simply writing down the sum and flagging it up as something you'd like to know better helps your brain get hold of the information.

Don't beat yourself up about forgetting or making mistakes! Very few people are lucky enough to learn everything perfectly the first time, or even the tenth.

Super-Size Me: Working with Bigger Numbers

The sums up to $10 + 10$ are so important. Most of the sums you do involve small numbers (checking you haven't lost a finger in a washing-up accident, figuring out whether you have enough eggs for an omelette — the sums you do without even thinking about them). Importantly, these small-number sums are key building blocks to working with bigger numbers.

When you have more of a handle on simple addition and subtraction, and some tools for remembering simple sums, you're ready to move on to larger numbers. The following sections show you how.

Adding and taking away bigger numbers

For the purposes of this section, imagine travelling in a country where only three types of banknote are available: \$100, \$10 and \$1.

In your cash drawer you have \$125 — a \$100 note, two \$10 notes and five \$1 notes. You can read the first number of \$125 as how many \$100s you have, the second number as how many \$10s and the third as how many \$1s. For your birthday a generous friend gives you \$213 to celebrate. He gives you two \$100 notes, one \$10 note and three \$1 notes.

You had one \$100 and have just added two, so now you have $1 + 2 = 3$; three \$100 notes. You can do the same for the \$10s: You had two and your friend gave you one, so now you have $2 + 1 = 3$; three \$10 notes. Likewise, you had five \$1 notes. Your friend gave you three, so now you have $5 + 3 = 8$; eight \$1 notes.

Altogether, you have three \$100s, three \$10s and eight \$1s, making a grand total of \$338. Notice how you can just write down the numbers of each note to give you your final answer.

Taking away uses the same kind of idea. You have \$275 saved up and you want to buy a new game for your Xbox, which costs \$64. In your cash drawer you find two \$100 notes. The game doesn't need any of them, so you have $2 - 0 = 2$ left.

You have seven \$10s. You need six of them, so you have $7 - 6 = 1$ left.

And you have five \$1 notes, of which you have to use four, so you have $5 - 4 = 1$ left.

Altogether, that leaves you with \$211.

Knowing your adding and taking-away facts up to $10 + 10$ and $20 - 10$ will be extremely useful in this section. If you're not confident, keep practising — it'll soon come!

The basic recipe for adding numbers is to split them up into hundreds, tens and units — or \$100 notes, \$10 notes and \$1 notes, as per the preceding examples — and add each type (or each kind of banknote) separately.

In line: Adding larger numbers in columns

When you want to add larger numbers, stack them on top of each other so that the ones digits line up in a column, the tens digits line up in another column, and so on. Then add column by column, starting from the ones column on the right. Not surprisingly, this method is called *column addition*. Here's how you add $55 + 31 + 12$. First add the ones column:

$$\begin{array}{r} 55 \\ 31 \\ +12 \\ \hline 8 \end{array}$$

Next, move to the tens column:

$$\begin{array}{r} 55 \\ 31 \\ +12 \\ \hline 98 \end{array}$$

This problem shows you that $55 + 31 + 12 = 98$.

For the sake of your sums, try to keep your columns neat. Give yourself plenty of space so you don't mix up columns. Use grid paper if it helps.

Carry on: Dealing with two-digit answers

Sometimes when you're adding a column, the sum is a two-digit number. In that case, you need to write down the ones digit of that number and carry the tens digit over to the next column to the left — that is, write this digit above the column so you can add it with the rest of the numbers in that column. For example, suppose you want to add $376 + 49 + 18$. In the ones column, $6 + 9 + 8 = 23$, so write down the 3 and carry the 2 over to the top of the tens column:

$$\begin{array}{r} 2 \\ 376 \\ 49 \\ + 18 \\ \hline 3 \end{array}$$

Now continue by adding the tens column. In this column, $2 + 7 + 4 + 1 = 14$, so write down the 4 and carry the 1 over to the top of the hundreds column:

$$\begin{array}{r} 12 \\ 376 \\ 49 \\ + 18 \\ \hline 43 \end{array}$$

Continue adding in the hundreds column:

$$\begin{array}{r} 12 \\ 376 \\ 49 \\ + 18 \\ \hline 443 \end{array}$$

This problem shows you that $376 + 49 + 18 = 443$.

Columns and stacks: Subtracting larger numbers

To subtract larger numbers, stack one on top of the other as you do with addition. (For subtraction, however, don't stack more than two numbers — put the larger number on top and the smaller one underneath it.) For example, suppose you want to subtract $386 - 54$. To start, stack the two numbers and begin subtracting in the ones column: $6 - 4 = 2$:

$$\begin{array}{r} 386 \\ - 54 \\ \hline 2 \end{array}$$

Next, move to the tens column and subtract $8 - 5$ to get 3:

$$\begin{array}{r} 386 \\ - 54 \\ \hline 32 \end{array}$$

Finally, move to the hundreds column. This time, $3 - 0 = 3$:

$$\begin{array}{r} 386 \\ - 54 \\ \hline 332 \end{array}$$

This problem shows you that $386 - 54 = 332$.

Can you spare a ten? Borrowing to subtract

Sometimes the top digit in a column is smaller than the bottom digit in that column. In that case, you need to borrow from the next column to the left. Borrowing is a two-step process:

1. Subtract 1 from the top number in the column directly to the left.

Cross out the number you're borrowing from, subtract 1, and write the answer above the number you crossed out.

2. Add 10 to the top number in the column you were working in.

For example, suppose you want to subtract $386 - 94$. The first step is to subtract 4 from 6 in the ones column, which gives you 2:

$$\begin{array}{r} 386 \\ -94 \\ \hline 2 \end{array}$$

When you move to the tens column, however, you find that you need to subtract $8 - 9$. Because 8 is smaller than 9, you need to borrow from the hundreds column. First, cross out the 3 and replace it with a 2, because $3 - 1 = 2$:

$$\begin{array}{r} 2 \\ \cancel{3}86 \\ -94 \\ \hline 2 \end{array}$$

Next, place a 1 in front of the 8, changing it to an 18, because $8 + 10 = 18$:

$$\begin{array}{r} 2 \\ \cancel{3}186 \\ -94 \\ \hline 2 \end{array}$$

Now you can subtract in the tens column: $18 - 9 = 9$:

$$\begin{array}{r} 2186 \\ -94 \\ \hline 92 \end{array}$$

The final step is simple: $2 - 0 = 2$:

$$\begin{array}{r} 2186 \\ - 94 \\ \hline 292 \end{array}$$

Therefore, $386 - 94 = 292$.

In some cases, the column directly to the left may not have anything to lend. Suppose, for instance, that you want to subtract $1,002 - 398$. Beginning in the ones column, you find that you need to subtract $2 - 8$. Because 2 is smaller than 8, you need to borrow from the next column to the left. But the digit in the tens column is a 0, so you can't borrow from there because the cupboard is bare, so to speak:

$$\begin{array}{r} 1002 \\ - 398 \\ \hline \end{array}$$

When borrowing from the next column isn't an option, you need to borrow from the nearest non-zero column to the left.

In this example, the column you need to borrow from is the thousands column. First, cross out the 1 and replace it with a 0. Then place a 1 in front of the 0 in the hundreds column:

$$\begin{array}{r} 0 \\ \cancel{1} \ 10 \ 0 \ 2 \\ - 3 \ 9 \ 8 \\ \hline \end{array}$$

Now cross out the 10 and replace it with a 9. Place a 1 in front of the 0 in the tens column:

$$\begin{array}{r} 0 \ 9 \\ \cancel{1} \ \cancel{10} \ 102 \\ - 3 \ 98 \\ \hline \end{array}$$

Finally, cross out the 10 in the tens column and replace it with a 9. Then place a 1 in front of the 2:

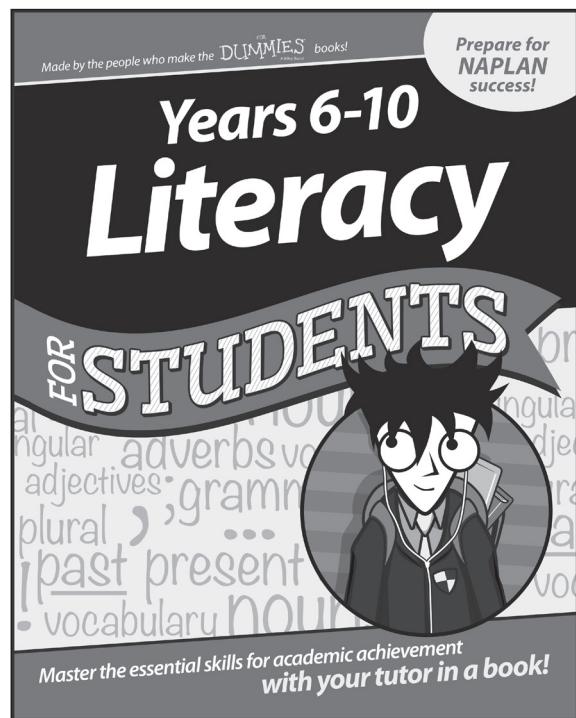
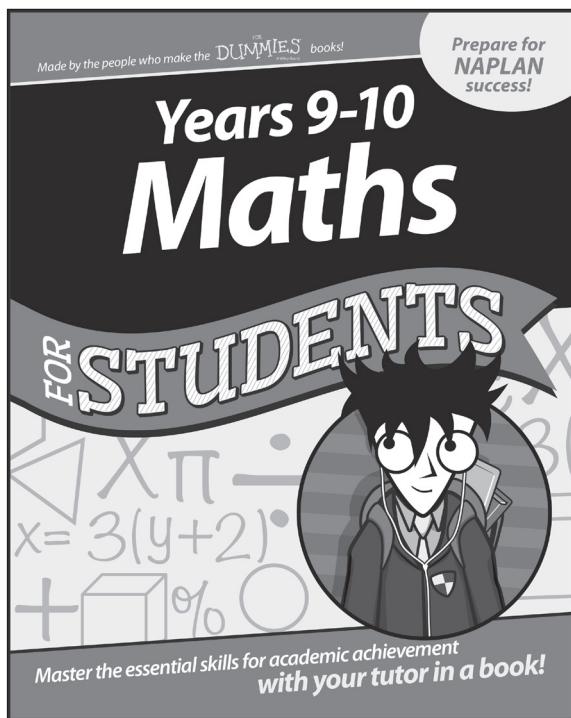
$$\begin{array}{r} 0 \ 9 \ 9 \\ \cancel{1} \ \cancel{10} \ \cancel{10} \ 12 \\ - 3 \ 9 \ 8 \\ \hline \end{array}$$

At last, you can begin subtracting in the ones column: $12 - 8 = 4$:

$$\begin{array}{r} 0 \ 9 \ 9 \\ + 40 \ 40 \ 12 \\ \hline -3 \ 9 \ 8 \\ \hline 4 \end{array}$$

Then subtract in the tens column: $9 - 9 = 0$:

$$\begin{array}{r} 0 \ 9 \ 9 \\ + 40 \ 40 \ 12 \\ \hline -3 \ 9 \ 8 \\ \hline 0 \ 4 \end{array}$$



Then subtract in the hundreds column: $9 - 3 = 6$:

$$\begin{array}{r} 0 \ 9 \ 9 \\ + 40 \ 40 \ 12 \\ \hline -3 \ 9 \ 8 \\ \hline 6 \ 0 \ 4 \end{array}$$

Because nothing is left in the thousands column, you don't need to subtract anything else. Therefore, $1,002 - 398 = 604$.

Also available ...

Made by the people who make the **DUMMIES** books!

A Wiley Brand

HEY PARENTS...

Does your son or daughter worry about their maths studies?

Are you able to help them with their assignments, revision or homework?

HEY STUDENTS...

Do you sometimes find your homework difficult?

Are you worried that other students understand what is happening in maths, but it is all just $+\% \geq \infty \sqrt{}$ to you?

Help is now at hand with your best maths tutor ever — in a book!

- ***Add, subtract, multiply and divide with positive and negative numbers***
- ***Work with fractions, decimals, ratios and percentages***
- ***Master geometry, graphs, weights, time and temperature***
- ***Apply algebra techniques and start solving equations***
- ***Understand and solve worded problems***
- ***Avoid common maths pitfalls and make any test easier***
- ***Stay motivated in your studies***

WILEY

Also available
as an e-book

Cover Image: © Wiley

ISBN 978-0-7303-2673-1

90000

9 780730 326731